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Unit V Principal Stresses, Theories of
Failure

CO5. APPLY the concept of principal stresses and theories of failure to determine stresses on
a 2-D element.

Principal Stresses: Introduction to principal stresses with application, Transformation
of Plane Stress, Principal Stresses and planes (Analytical method and Mohr's Circle),
Stresses due to combined Normal and Shear stresses

Theories of Elastic failure: Introduction to theories of failure with application,
Maximum principal stress theory, Maximum shear stress theory, Maximum distortion
energy theory, Maximum principal strain theory, Maximum strain energy theory
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The planes, which have no shear stress, are known as principal planes, Hence principal
planes are the planes of zero shear stress. These planes catty only normal stresses.

The normal stresses, acting on a principal plane, are known as principal stresses.
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Then area of section, EF=EFx1=A.
The stress on the section EF is given by
Force . P - D)

.U= Avea of EFF -I

The stress on the section EF is entirely normal stress. There is no shear stress (or tan-
gential stress) on the seetion EF. _
Now consider a section FG' at an angle 6 with the normal cross-section EF as shown in
Fig. 3.1 (a). -
Aren of section FG = FG » 1 {(member is having unit thickness)

EF EF EF
= .'.I ﬂ-E—F‘G!_ = ﬂ l-H'FG-
cusﬂxl [ . Fr R EOEE)
._.._{-l_., en EF 1 A
T eos@ - x1=4)
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. Stress on the section, FG

_ Force _ P
Area of section FG ( A ]

- F
=ocos b o= ka1
[ z ] (3.1)

This stress, on the section F(7, is parallel to the axis of the member {i.e., this stress is
along x-axis). This stress may be resolved In two components. One component will be normal
to the section FG whereas the second component will be along the section FG (i.e., tangential
to the section FG). The normal stress and tangential stress (i.e., shear stress) on the section
F( are obtained as given below [Refer to Fig. 3.1 (8)].

Let P_= The component of the force P, normal to section FG
=Pcos 0

P, = The component of foree P, along the surface of the sectinn F(; (or tangential
to the surface F()

=P gin 8 _
o, = Normal stress across the section FG
o, = Tangential stress (i.e., shear sLress) across the section FG.
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-, Normal stress and tangential stress across the section FI(Z are obtained as,

Normal stress o = Force normal to section FG
” ! n Area of section FGG

P ] .
- (= P =Pcos a)
] [cusEJ :
P

P 2
Amsﬂ cos 0= Acus 5]

=g ceos® b (

e

= D‘] . A3.2)

Tangential stress {i.e., shear stress),

o = Tangential force across section FG
‘ Area of section FG

P Pgind
: T ' (v P,=Psginf)
msﬂ] (msﬂ) _

=£-5in,ﬂ.cuaﬁ=usinﬂ.cﬂsﬂ
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- % « 2 sin O cos 0 [Multiplying and dividing by 2]

= 7 sin 26 (- 2sinBcosB=sin20)  .(3.3) |

From equation (3.2), it is seen that the normal stress (o) on the section FE will be |
maximum, when cos? B or cos 6 is maximum. And cos 6 will be maximum when 0 = 0° ag
cos 0° = 1. But when 8 = 07, the section F(G wili coincide with section EF. But the section
EF is normal to the line of action of the loading. This means the plane normal to the axis

of loading will carry the maximum normal stress.

.. Maximum normal stress, =ocos?f=ccos’0° =0 -(3.4)
From equation (3.3), it is observed that the tangential stress (i.e., shear stress) across

the section FG will be maximum when sin 26 is maximum. And sin 20 will be mazimum when
sin 26 = 1 or 20 = 90° or 270°
or 0 = +0° or 135°

This means the shear stress will be maximum on twoe planes inclined at 45° and 135° to
the normal section EF as shown in Figs. 3.1 (¢) and 3.1 (d). '

Max. value of shear stress = -g- sin 20 = % s 90° = -g—. - LW{a5)
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First plane of maximum
shear siress 6 = 45° |
E ¥ ~ E |
45° 1 |
: 135° ;
P F F
: >R N S ;
F - F A
second plane of maximum
: shear stress b= 135"
. Fig. 3.1 () Fig. 3.1 (ef) -
From equations (3.4) and (3.5) it is seen that maximum normal stress is equal to o
whereas the maximum shear stress is equal £o o/2 or equal to half the value of greatest pnrmal
stress,
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Probiem 3.1. A:rectangulor bar of cross-sectional area 10000 mm?® is subjected to an
axial load of 20 kN. Determine the normal and shear stresses on & section which is inclined al
an angle of 30" with normal cross-section of the bar.

Sol. Given :

Cross-sectional area of the rectangular bhar,

. A = 10000 mm?

Axtial load, P =20 kN =20,000 N

Angle of obhique plane with the normal cross-section of the bar,

8= 30°

ire = — =" =2 N/mm?
Now direct stress, a A~ 10000 min
Let o, = Normal stress on the oblique plane

a, = Shear stress on the oblique plane.
Using equation (3.2) for normal stress, we get
o, =ccos?
=2 x cosZ 30° (- =2 Nmm?
= 2 x (,8662 {*+ cos 30° = 0.866)
= 1.5 N/mm?2 Ans.
Using equation {3.3) for shear stress, we get

g, ='§ sin 20 = %'x sin (2 x 30%)
=1 x sin 60° = 0.866 N/mum?2, Ans.
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Problem 3.2. Find the diameter of a-ﬂircu_far bar which is subjected to an axial pull of

160 BN, if the moximum allowable shear stress on any section is 65 N/mm?2.

=Sol. Given : |
Axial pull, P =160 kN = 160000 N
Maximum shear stress = 65 N/mm?
Let D = Diameter of the bar
. Area of the bar = g =

. Direct stress, o= _‘E. - 160000 - E:il}l};ﬂ M

A E HE i}
4

Maximum shear stress is given by equation (3.5).

2. Maximum shear stress = —E = *—"mgiu:;g .

But maximum shear stress is given as = 65 N/mm?.
Hence eguating the two values of maximum shear, we get

) _ 40000
- 85 = o nD?
D 640000
Ex.ﬂixﬁﬁ
D =39.58 mm. Ans.

= 15679
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Problem 3.3. A rectongular bar of cross-sectional areq of 11000 mm? is subjected to a
tensile load P as shown in Fig. 3.3. The permissible normal and shear stresses on the obligue
plane BC are given as 7 Nimm? and 3.5 Nimni? respeciively. Determine the safe valie of P.
Sol. Given :
Area of cress-section, A = 11000 mm?2 C ¢
Normal stress, o, =7 N/mm? P : o ' |
Shear stress, g, = 3.5 N/mm? D 7
Angle of oblique plane with the axis of bar = 60°. 260
Angle of oblique plane BC with the normal eross- B
gection of the bar, Fig. 3.3 !
0 = 90° — 60° = 3¢0° |
. Let F = Safe value of axial pull
o = Safe stress in the member.
Using equation (3.2),
o,=oceos*8 or 7=0cos?30°
= o {0.866)%. (- cos 30° = 0.866)
7
7= 0866 x 0.866 ~ 0034 Nimm?
Using equation (3.3),
g, = % sin 20
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or 3.5 = Eﬂmﬂxﬁﬂ“-gsmﬁﬂ"—ExDEEE

35 2 |
= 0866 = 8.083 N/mm?2.

The safe stress is the least of the two, i.e., 8.083 I-IIU’I'M:J.E
Safe value of axial pull,

P = Safe stress x Area of cross-zection

. | = 8,083 x 11000 = 88913 N = 88.913 kN. Ans. .
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_ 3.4.2. A Member Subjected to like Direct Stresses in two Mutually Perpendicu-
lar Directions. Fig. 3.4 (a) shows a rectangular har ABCD of uniform cross-sectional area A
and of unit thickness. The bar is subjected to two direct tensile stresses (or two-principal ten-
sile stresszes) as shown in Fig. 3.4 {a). ' :

Oz FP,sing&C

I

Fig. 3.4 (@}

Let FC be the obligue section on which stresses are to be calculated. This can be done by
converting the stresses o, (acting on face BC) and o, {acting on face AR) into eguivalent forces.
Then these forces will be resolved along the inelined plane FC and perpendicular to £C. Con-

sider the forces acting on wedge FBC.
Let B = Angle made by oblique section FC with normal cross-section BC

* o, = Major tensile stress on face AD and BC
o, = Minor tensile stress on face AB and CD
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P, = Tensile force on face BC
P, = Tensile force on face FB.

The tensile force on face BC, _
P, = g, = Area of face BC = o, x BC = 1 (- Avea=080Cx1)

The tensile force on face FB,
P, = Stress on FB x Area of FE = o, w "B =< 1.

The tensile furcea P; and P, are also acung on the obhque section FC. The force P, is
acting in the axial dlrectmn, wh&reas the force P, is acting downwards as shown in Fig. 3.4 (a-]i
. Two forces P, and P, each can be resolved into twu components i.e., one normal to the plane FC

and other alung the plane FC. The components of P, are P, cos 9 nr.rrmal to the plane FC and
P, sin 0 along tke plane in the upward direction. Th'E mmpnnents of P, are P, sin & normal to
the plane FC and P, cos 6 along the plane in the downward direction.

Let FP_ = Total force normal {o section FC
= Component of force P, normal to seetion FC
+ Component of force P, normal to section FC

=P, cozsB+P,sinb
=g, xBCxeosB+0,xBF xsing8 (~ P, =o0,x8C, P, = g, x BF)
P, = Total force along the section FC

14
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= Component of force P, along the section FC
+ Component of force P, along the section FO
=P, 5in 04 (- P, e0s 0) (—ve sign iz taken due to opposite direction)
=P sinf-F,cos 8
=0, x BC xgin fl — o, x BF x cos 8
(Substituting the values P, and P,)
o, = Normal stress across the section FC
_ Total foree normal to the section FC

Area of section FOC
_ B o1 x BC x ¢c0s 8 + Gy x BF xsin 0
FCx1 - FC

=0 xExcnsﬂ+c xu}i;E:-csinE
17 ro L '3

=nlxm5&xmsﬂ+ﬂzxsinﬂx3inﬂ

. BC BF 0
(, In triangle FBC, FE-_WEB' :ﬁﬁ--smﬁj-

=0, cos® 0 + a, sin? 6

1+ cos 28 * 1--cos 28 "
=y ——-—-—~—~2 + 0y -—~—---2

[ cos?0=(1+cos20¥2 and sin? 8 = (1 - cos 28)/2]

Oy + 03 +Ul—f32
-2 2

cos 20 ..(3.6)
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g, = Tangential stress (or shear stress) along section FC
Total force along the section FC ( . Siress Fﬂl‘l:ﬂ] |
- Area of section FC ) Area |
|
FooE 20 = o520 —-8in® @ ¥ cos 20 = cos® B - sin? @ |
=co3*0—(1l-cosfll=2cos®0-1 = (] -sin® @} -sin®*8=1-2sin*0 ;

EDEE B = m O sinﬂ H = Er]ﬂ
2 2
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_ R oy x BCxsinf-oc, x BF »xcos 8
CFCx1 FC -

BC . g BF a
=ID‘1K'—HEIII —G,EK"‘Fr—CxﬂﬂE

FC
=G'1xcosﬂxsin B-a, x sinBxcosB

[ In triangle FBC, 23 = cos 6, % - sin e]

FC
= (o, — a,) cos § sin &

R i ;UE) x 2 ¢os B sin @ (Multiplying and dividing by 2)
_ (o - 9% ¢in 20 - 3.7

The resultant stress on the section FC will be given as

Op = {Jo,° + 02 (3.8)

Obliguity {Refer to Fig. 3.4 (8)]. The angle made D C
by the resultant stress with the normal of the oblique plane, o
is known as obliquity. It is denoted by ¢. Mathematically, ' N
oy | __— - ';;'k‘\
- tang= —— . [3.8 ()] vut
o, .
Maximum shear stress. The shear stress is given » = g °n
by equation (3.7). The shear stress (g} will be maximum Fig. 3.4 (h)
when ' :
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sin20=1 or 20=90° or 270° (v sn80°=1 and also sin 270° = _l}
or _ 8 = 45° or 135°

e .(3.9)

2
The planes of maximum shear stress are obtained by making an angte of 45° and 135° |
with the plane BC (at any point on the plane BC) in such a way that the planes of maximam

shear stress lie within the material as shown in Fig. 3.4 (c).

Plane of maximum shaar stress l—’Q
/ o G

135

And maximuwmn shear stress, (G}, . =

Fig. 3.4 (c)

Hence the planes, which are at an angle of 45° or 135° with.the normal cross-section BC
[see Fig. 3.4 ()], carry the maximum shear stresses. | |
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Principal planes. Principal planes are the planes on which shear stress is zero. To
loeate the position of principal planes, the shear stress given by equation (3.7) should be equated
" to zero. ' _ : _ |
For principal planes, |
|
- |
G179 in20=0
Cor . sin20=0 [ (o, o,) cannot be equal to zero) ’
or 20=0 or 180° ,
0=0 or 20°
when 6 =0, o =S1r9% G172 520
13 2 2
O, +03 U1 -0 s
= + cos 0
2 2 _
=D, ST (= e0s0°=1)
= (]1
when 6 = 90°, un=“‘;°2+”1;”“ cos 2 x 90°
=21 T2 L 01792 001800
2 2
S Al s YA | (- cos 180° =— 1)
2 2
=0,
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3.4.3. AMember Subjected to a Simple Shear Siress.
Fig. 3.8 shows a rectangular bar ABCD of uniform cross-sectional O
area A and of unit thickness. The har is subjected to a simple
-shear stress {g) across the faces BC and Af. Let FIU be the oblique I
T

section on which nermal and tangential stresses are to be

calculated.

~ Let 0 =Angle made by oblique section FC with normal
crogs-section BC,

1 = Shear stress across faces BC and AD. o Fig. 3.8
It has already haen proved (Refer Art. 2.9) that a shear stress is always accompanied by
-an equal shear stress at right angles to it. Hence the faces AB and CI! will also be subjected to
a gshear stress g as shown in Fig. 3.8. Now these stresses will be converted into equivalent
forces. Then these forces will be resolved along the inclined surface and normal to inclined
surface. Consider the forces acting on the wedge FBC of Fig. 3.9.
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R T —— . " T — § . T



Let , = Shear force on face BC D C o
= Shear stress x Area of face BC Q, cos 8./ \‘{i""’ﬂ
=txBCx1 : "ﬂ:='
(-~ Area of face BC = BC x 1) oA eeBexd

ST LT e

Q, = Shear force on face B A U T
=1 x Area of FB %%
=txFBx1=x.FB Fig. 3.9 ¢

P, = Total normal force on section FC

P, = Total tangential force on section FC.

The force @, is acting along face CB as shown in Fig. 3.9. This force is resolved into two
componentsi.e., @, cosfand @, sin 8 along the plane CFF and normal to the plane CF respectively.

The force @, is acting along the face FB. This force is also resolved into two component
i.e., Q, sin 0 and §, cos B along the plane FC and normal to the plane FC respectively.
-, Total normal force on section FC,
P, =Q,sin0+Q,cos0 : _
=txBCxsin@+txFBxesB (v Q =txBCand@,=1xFB)
And total tangential force on section FC.

P,=Q,sin6—Q, cos8. (—ve sign is taken due to opposite direction)
=t x FB x gin 6 — 1 x BC x cos 0 (v @=t.FBand @, =t.BC)

Let o, = Normal stress on section FC
| o, = Tangential stress on section FC

Government college of Engineering and Research Awasari
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_ Total normal force on section F'C

Then I Area of section FC

— Pn

T FCx1
t.BC.sin8+t.FB.cos @

= FC x1

=1 ﬁ ginf+1 E cos O
- FC RO

=g.co80.8nB+v.5m0b.cost

BC

(- Area=FC x 1)

FB ]

- Intriangle FBC, — =c038, ——=sind
( ¢ FC

FC

, =ZrcosB.sind
=1 sin 20 {~» 2s5in 0 cos O =gin 26) ..(3.1G)
Total tangential force on section FC

d =
an Ot Area of section FC

b
FC =1
_'i:xFB xsin®-txBC xc0sh
- FCx1 '

=1:xf§~ :sil.lﬁut'xg-.c-xmsﬂ'

=txsinﬁxsinﬂ-txcusﬂxmﬂ

Government college of Engineering and Research Awasari
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= ¢ sin 6 — T cos? B = — v [cos? 8~ sin? @]
=— 1 cos 20 (-

—ve sign shows that o, will be acting downwards on the plane CF.
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: A Member Subjected to Direct Stresses in two Mutually Perpendicular
Directions Accompanied by a Simple Shear Stress. Fig. 3.10 (a) shows a rectangular bar
ABCD of uniform cross-sectional area A and of unit thickness. This bar is subjected to :
Fp
i,
D T T ] [H ) C o
£ ——] — . ! ag, |
4—-—:: P, /e —: Q4 cos 879 a & _
B'.I: T T ;_1::1 ) ey *F,:uquCH‘i
< > in 8
DS /P sl
LT e
: 'l|" ¥ 4‘ ¥ hd
o : Pa=o,xFBx 1

{a) by ool
Fig. 3.10

{i) tensile stress o, on the face BC and AD
{ii} tensile stress o, on the face AB and €D
(iii) a simple shear stress ¥ on face BC and AD.

But with reference to Art. 2.9, a simple shear stress is always accompanied by an equal
shear stress at right angles to it. Hence the faces AB and CD will also he subjected to a shear
stress t as shown in Fig. 3.10 (a).

We want to calculate normal and tangential stresses on oblique section FC, which is
inclined at an angle 8 with the normal cross-gection BC, The given stresses are converted into
equivalent forces. :
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The forees acting on the wedge #'BC are :
P, = Tensile force on face BC due to tensile stress o,
= g, x Area of BC .
=g, x BCx1 (- Area=BCx1)
= o, x BC
P, = Tensile force on face FB due to tensile stress o,
= u, % Area of FB =g, xFBx1

: =0, x FB
| @, = Shear force on face BC due to shear stress
. = ¢ % Area of BC :

=txBCx1=1xBC

Qz — Shear force on face FB due o shear stress t
=1 % Area of FB
=t xFB x 1=t xFB,

Resolving the above four forces (fLe., P, Py, €, and Q) normal to the. uElique section FC,
we get ' -
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Total normal force,
P =P cos6+ P, sinE|+leinEl+Q2cosB
Subatitutmg the values of P, Pg, @; and @,, we get |
P,=6,.BC cos0+0, FB.sinB+1,.BC.sin0+1.FB. cos® |

bimilarly, the total tangantm force (P} is oblained by resolving P,, P,, §, and tE@E along
the oblique section FC.

Total tangential force, _
P,=P, 5in 8- Pycos 0 @, cos 8 + @, sin 6
=0 .BC .sinf-0, FB.cos~1.RC.cos0+1t.FB.cgind
(substitute the values of P, P,, @, and @,)
Now, Let o, = Normal stress across the section FC, and
o, = Tangential stress across the section FC.
. Then normal stress across the section FC,
Total normal force across section 5C 5
Area of section FC T FCx1

0y . BC .cosB+0, . FB . 5infl + ©.BC .sinf+1.FB.cosd
FCOx1

0, =

=a BC cos O +a B sinf+t BC sing +1 £B cos &
TFRC *TFC "FC CFC
=Ty .c080.co88+ 0, 8in0.8iNG+T.c056.8IN0+TsinG. cos b

B
° '-‘ It] tl'i FBG,
[ angle FC
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={}'1¢ﬂﬂ-ﬂﬂ'+ﬂ'ﬂﬂinﬂﬂ'+2‘ﬂﬂ;ﬁﬁﬂﬁinﬂ
_ 14 cos 28 1 - cos 28
=ﬂ1 "'2— +ﬁﬂ. "—"'2—"'—

[ s 6 1+m52813mgﬂ= 1—{:;526

] + T 85in 26

and 2 cos 0 sin 6 =sin EEI]

-2 2
and tangential stress (i.e., shear stress) across the section FC,

o = Total tangential force across section FC ~ F,

f Area of section FC T FCx1
_ 0y . BC sinB-0y. FB cos0-1.BC cosB+1.FB.gin6

FCx1
= —BE sin@-a E cosf -t —'BE cos 0+ T E aiﬁﬂ
1" FC - T FC S FC TFC

=0,.c058.8n0-0,.6n0.cosB-1.c050.cos0+T.5n0.sin0

o8 20 + ¢ sin 20 L3 1-2}

. BC _ FB_
(. In triangie FBC, e cos 6 and 7o = gin H}

= {0, ~0,) . cos B 8in 0 —1tcos? 0 + vsin? g

o, —
:(—lﬁ"ﬂl) .2 cos 0 sin 0 - vicos® # - zin? B)
A
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Position of principal planes. The planes on which shear stress (i.e., tangential stress)

is zero, are known as principal planes. And the stresses acting on principal planes are known
principal stressss,
The position of principal planes are obtained by equating the tangential stress [given by
equation (3.13)] to zero. : |
For prinecipal planes, g, =0
or El—;ﬂﬂinﬁﬂ—tms%:ﬁ
or Gl;UE sin 20 = v cos 20
_ sin 26 T %
or cos20 (0 -0,) (g, ~ay)
2
: 2r
_ 2 .(3.14)
or tan 26 (6, ~0y) |
But the tangent of any angle in a right angled triangle
Height of right angled triangle
~ Base of ¥ight angled triangle
Height of right angled triangle 27

Base of right angled triangle ~ {o; - 03)
Height of right angled triangle = 2z
Base of right angled triangle = (g, — g,).
Now diagonal of the right angled triangle
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=+ \I{ﬂl —Ug }E -+ {21}2 =k J(Ul - 1:52 }2 + 4’['2 Flg 3.11
=J(_u:-'1—n:12]2+41:2 and - J‘E‘Jl—ﬁg]ﬂ-l-‘dztz |

1st Case. Diagonal = J(crl —- Oy ¥ 4 41

h . o0 Height 2
Sm =T a1 T
o Diagonal  [(g, — 5)* + 47"
Base (g, — Uy}

20=——-T= .
and C05 Diegonal r_:fﬂl _’U’ 2; 12 4 477

The value of major principal stress is obtained by substituting the values of sin 26 and
coe 20 in equation (3.12). -
Major principal stress
Ul + T + 'D'E
2

- ﬂl'l'l:rﬂ Ul—ﬂg (Ul'_ E} _..._._._—21
2 o, = Cg) -+ 477 \ll(ﬂl—ﬂ'z}ﬂ-l:‘l‘lfg

cos 20 + T sin 20
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0,403 1 (o) ~0y)f . 21

2 2 Jio, —0g)? + 4% (o, - 0g)? +41°

G.l + UE + (Ul _—ﬂ'gjﬂ +41:2

2 Z,H( Oy — Og)° + 41’

Oy + O 1
=1T2+EJ(?1_UE]2+4TE
0, 4+ O g -0 2
= 12 4 ( 12 2—) +T° o(3.15)

2nd Case.  Diagonal = - \f[‘:’l -0y )2 4 42

2t
Then sin 20 = = .
-Jl[r:rl ~Tg ) 4 477
o, - O
and cos 26 = ——{“-4'*-—**2—}-“—
— oy -y +41°
Substituting these values in equation (3.12), we get minor principal stress.
Minor principal stress
w2202 L 2L T2 066 96 + 1 sin 26
2 2
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_..Ul""j?..,.ﬁl“c‘zx Fy — Ta 2t
2 2 2 g "X o 2
--,J'{alunﬂ} + 4t _J{gl—cgj + 4T

_ 0 +0y (0y - 03)* 21"

2 gl -0y + 442 oy —0y)? + 4

T, + Oy (o] — Ug}ﬂ + 41%

E 2(cy - 0)% + 47

1
. =51;EE -EJ{UI-UE}Ed-*-l'EE

_oroy_ (o -a) |
=5 J( 3 ]-1-1: | L13.16)

Equation (3.15) gives the maximum principal stress whereas equation (3.16) g"ves mini-
mum principal stress. These two principal planes are at right angles.

Fig.3.11{a}showsthe principal planesin which 6,andd,arethe values from equation (3.14).
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+ 0y = >

Oz
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Fig. 3.11 {a)

Maximum shear stress. The shear stress iz given by equation (3.13). The shear stress
will be maximwm or minimum when

d
a’*é' {U£}= 0

d | —0y .
or — |2 gin 28 -vcos 20| =0
e 2
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or | u[ﬂﬂsﬂﬂ}xﬂ—'ﬁ[—ﬂiﬂﬂﬁ]b{2=ﬂ
(0, — 0.} . cos 28 + 2esin 20 = 0
Or 2t sin 28 = - (0, — 0,) cos 26

= {0, — a;) cos 20
8sin28 oy -0oy

or cos 26 bt o
or tan 20 = —2 ;’* L A3.17)
Equation (3.17) gives condition for maximum or minimum shear
stress.
Iftan 20 = -2 91
2t -
. {io = 0 5
Then sin 20 = = et 21 5 "5.4
J(UE —0y ) + 4t )
o .

and ol = 2 s
1?{1::3 - _Ul] + 4t
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' Substituting the values of sin 20 and cos 20 in equation (3.13), the maximum and mini-
mum shear stresses are obtained.

Mazimum shear stress is given by

Oy =0y |
(O = 12 2 sin 26 — 1 cos 26

2
G'I_-'U_g_x '(UEHUI} . 2t

2 2, 4.2 x\,r 2, 42t
J{crz—crl} + 4t (g — 0y )" +41

(o, -y ) 2

e S L — e
20y —0y)? +4e? (o - 0,7 + 40 :

2 42
e e L EJ{UE—UI}2+4‘I:E

2J(ay ~ ) + 48 2

1
£Ut)max = E J{GE - Gl }E + "-1'1:2

il
#*

i
i+

I+

_ _;. Jio,—0,)% + 422 L (3.18)

The planes on which maximum shear stress is acting, are obtained after finding the two
values of 8 from equation (3.17). These two values of 6 will differ by 90°.

The second method of finding the planes of maximum shear stress is to find first prinei-
pal planes and principal stresses. Let, is the angle of principal plane with plane BC of Fig. 3.11

{a}. Then the planes of maximum shear will be at B, + 46° and &, + 135° with the plane BC as
shown in Fig. 3.12 ().
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Note. The above relations hold good when one or both the stresses are compressive.

F'y
C
ST
'me —
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0, + 135° >
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—
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+
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Problem 3.11. At ¢ point within o body subjected to two m
‘ ttuall ; T
tions, the :?tresses are 80 Nimm? tensile and 40 Nimm? tensile. Eact-;a a; fﬁiﬁiﬁﬁﬁsﬁ;ﬁ
accompanted by a shear stress of 60 Nimm?®, Determine the normal stress, shear stress and
resultant siress on ar obligue plane inciined at an angle of 45° with the axé‘s of minor tensile

stress.
Sol. Given :

Major tensile stress, o, = 80 N/mm?
Minor tensile stress, o, = 40 N/mm?
Shear stroess, 1 = 60 N/mm?
Angle of cblique plane, with the axis of minor tensile stress,

0 = 45°,
(2) Normal stress (o)
o Using equation (3.12),

Ty +0n O =0
R
T 80+40 80-40
= 5 + 2 cns(ﬂx45ﬂ+ﬁﬂsin(2x45°]
= 60 + 20 cos 90° + 60 sin 90°
=60 +20x0+80x1 (" eos90°=()
=60 + 0 + 60 = 120 N/'mm?2, Ans.

cos 28 + 1 sin 29

36
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+ 40 N.n’l‘llﬂ"lz
60 N/mm 4——
I
Axis of mi ; vl
80 2 4| T strese M 2
mm ’ ______________ ;_ _____________ {_B_ﬂidfmm
| g
, !
" 60 Nimm
¥ 40 Nfmm”
Fig. 3.13
(&i) Shear (or tangential} stress (o,)
Using equetion (3.13),
0y~ Oa
g, = 5 s5in 20 - 1 cos 208
80 - 40 .
=~ sin (2 % 456} - 60 x cos (2 x 45°)

= 20 = 3in 90° — 60 cos 90°
=20 x1-60x 0
| =20 N'mm?  Ans.
(2ii) Resultant stress { og)

Using equation, o

n

o
=

+
A

Government college of Engineering and Research Awasari
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Problem 3.12. A reclangular block of material is subjected to a fensile stress of 110
Nimm? on one plane and a tensile stress of 47 Nimm?® on the plane at right angles to the former.

Each of the above stresses is accompanied by a shear stress of 63 NimmZ and that associated
with the former tensile stress tends to rotate the block anticlockwise. Find :

(i) the direction and magnitude of each of the principal stress and. _

(ii} magnitude of the greatest shear séress. (AMIE, Summer 1983)
Sol. Given :

Major tensile stress, o, = 110 N/mm?*

Minor tensile stress, o, = 47 N/mm?

Shear stress, T = 63 N/mm?

() Major principal stress is given by equation (3.15).

2
o, +40 g, —
-~ Major principal stress = ITZ + J[_l UEJ 15

2
2
4 47 Nimm
63 N.I"rnrnE
et
110 Nimm® 8 110 Nimni®
2
&3 N/mm
—_—t
¥ 47 Nfmm®
Fig. .14

Government college of Engineering and Research Awasari

38




110+ 47  130-47Y
= 5 +‘((—zr] + 63

157 (83 a
= 78.5+y31.5% + 63° =785 + /09225 + 3969

= 78.5 + 70.436 = 148.936 N'mm®. Ans.
Minor principal stress is given by equation (3.16).

. o, 1+ g OFy, =0 £
. Minor principal stress, =12 _ ( ! 2] e

2 2
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110+47 110 -47
=5 " 2 +63% = 78,5 -70.436

= 8.064 N/'mm?2, Ans, ,
The directions of principal stresses are given by equation {3.14).
~ Using equation (8.14),

tan 20 = 2t _ 2% 63
2 x 63
= =3 =2.0

20 = tan™! 2.0 = 63° 26" or 243° 26"
0=31"43" or 121" 48. Ans.
(i) Magnitude of the greatest shear stress
Greatest shear stress is given by equation (3.18).

Using equation (3. 18],

() e = -I-J(Ul - 55)% + 472

i
_ EJ{mu ~47)% + 4 x 632

=-2¥J532+4x633 =%KE3K*JE
= 70.436 N/mm®. Ans.

Government college of Engineering and Research Awasari

40




i 'g Circle
DT Determination of Stresses on Oblique Planes by Mohr

Method i.e. Graphical Method :

s Mohr’s cir

q g ’ alled a ;
' ' i , graphical method ca |
’ Stresses on oblique p]anes can also be determined by ap !
method. _—
1 L . . ‘.! i
e ohr's circle method for various cases arc cxplamcd as 1ollo

i anes :
- Pure Direct Stresses on Two Mutually Perpendicular Pl

Case (a) : When both stresses are tensile :

.Uy
T B OA = oy
T OB =0y
0 ON =0
N=o
o, ¢— L —p Oy M t
" OM = o,
LP = ( St )max
o lE C
Oy
. e
i\ A—se AP ctwoCERS (b) Mohr's circle
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Method of drawing the Mohr's circle :

Fig 7.8.1.1(2) Mcthod followed 1s :

1
i,

(]

If Q)

is origin (to represcnt zero direct stress), stresses to the right of *O will repres
(cnsile or positive SUESS and the s

tresses to the left of “O’ will represent compressive

negative Stresscs.
s on a direct stress planc will be represented by a vertical line abc

Clockwise shear stresse . '
anticlockwise shear stress will be represented by a vertical line bel

the horizontal line and
the horizontal line.

System of stresses is given in Fig. 7.8.1.1(a) and its corresponding Mohr’s circle in

Choosc a point ‘O’ to represent zero direct stress and choose a suitable scale to represent
ciresses on the diagram.

Represent OA = o and OB = o_ on chooscn scale.

Find the centre P of AB.

P as ccntre PA or PB as radius. draw a circie.

Government college of Engineering and Research Awasari
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IF 0 s the angle of oblique plane from the planc of stress o, draw a linc at 20) from PA
represented by line PM

Draw perpendicular from M on OA as MN.
In the Mohr's diagram

ON represents a_and MN represents a, on oblique planc of stressed matenal,

OM represents the resultant stress 6r on oblique plane.
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Case (b) : Stresses o, is tensile and

Government college of Engineering and Research Awasati

Sy IS compressive :




Method :

Choose point ‘O’ to represent zero direct stress.
Draw OA = o_ (tensile) and OB
surtable scale.

- Oy (compressive) to the left ‘O’ as per sign conventon @

Draw a line PM at an angle 20 where 0 is (he

angle of obli : g 18
o, = ON, q = MN ang o = OM " e plane from S £
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s gfterminatiun of Principal Stresses for Two Dimensional Direct
ress System with Shear Stress by Mohr’s Circle Method :

|
° |
|
Ae |
A B |
q OA = Oy f
OB = o, |
AC=BD=q
Ty
= > ﬂ-x DS = ﬂp1
DH = sz
v Q LP = ( 6y )max
D >C 6 = Angle of major
v L principal plane
Oy
(a) System of stresses (b) Mohr's diagram
- . Mohr's diagram for two dimensional stress system with shear stresses
l Fig. 7.9.1(a) shows thc sysicm of stresses and the Mohr's diagram for such a svstem is shown
in Fig. 7.9.1(b). Mecthod of drawing the diagram is as follow :
. Choose a point "O’ 1o represent zero dircct stress.
Government college of Engineering and Research Awasari
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= ¢ = ile on suitable scalc.
2. Draw OA = o, and OB Oy, both tensile

Draw a perpendicular at A upwards since shear stress on this planc is clockwise such
| that AC = q. Similarly. draw BD = q, downwards since shear stress on planc of o, is

anticlockwise.

‘n}l—_'/ . -

4 Join DC which cuts the horizontal linc at P.

and PC = PD as radius. draw a circle which cuts the horizontal line at R and

5 P as centre
S
Then the represcntation of principal and maximum shear stresses on this diagram is :
jor princip: = 0S

Major principal stress, o’pl

! incipal s = OR
Minor principal stress, np2
Maximum shear SIress, ()= LP

. . ¢ B lancs of principal stresses.
= Measure 20, Then O and (0 +90) will represent the p ) pe
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At a point in a material two stresses on mutually perpendicular planes are

400 N/mm’ and 200 N/mm?, both compressive Find the normal, tangential and

resultant intensity of stress on an oblique plane at 0 = 30 from the plane of
400 N/mm? by Mohr's diagram
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ATNSTRAE Wy .

Given : 5. == 100 N/mm-~. - s 200 N/mm=.

Refer Fig. 7 10 1(a) and (b)

System of s.resses :
2
oy = 200 N/mm

A

Fig. 7.10.1 : Mohr’s diagram

Method :

I Draw OA = 400 N/mm? = o_ on a choosen scale of 1 cm = 50 N/mm? 0 we left of O
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Draw OB = o, = 200 N/mm? (coimpressive).

Biscct BA at P.
P as centre and PA as radius, draw a circle.

From P. draw a line PM at 20 = 60° where 0 = 30" of the oblique plane from o

Draw PN perpendicular to OA.
By measurement.

Normal stress. g, = ON = 360 N/mm’ (compressive)

Tangential stress, o, = MN = 87 N/mm’

Resultant stress. G = OM = 370 N/mm2
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Example 2. Find the principal stresses and principal planes for a rectangular block subjected ©
stresses as shown in Fig. 7 10 2 by Mohr's diagram

Also find the magnitude of maximum shear stress

Also check the results by analytical method.
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2
)o'x-_-ewmmm

z

AT, - q= 300N/mm2

Oy

Fig. 7.10.2

600 N/mm’ (Tensile)

200 N/mm’ (Compressive)
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Tt

q = chear stress = 300 N/mm’

2
The Mohr’s diagram can be drawn as shown in Fig. 7.10.3 ona scale as 1 cm = 100 N/mm

Fir 7.10.3 : Mohr’s diagram
Method of drawing Mohr’s diagram :

Choose point ‘O’ 1o represent Zer0 direct stress.

Draw o, = OA = 600 N/mn® (tensile) and o, = OB = 200 N/mm? (compressive) on suitable
x

scale.

Draw q = AC = 300 N/mm? on o, and q = BD = 300 N/mm’ on o,




4. Join CD which intersects OA at P.

B P as centre and PC as radius, draw

6. From P draw perpendicular LP,
Then by measurement, we get,

_ OR =700 N/mm’ (tensile)

4 circle which cuts the horizontal line at R ang g

Major principal stress, a
I

Minor principal stress, o = 0S = 300 N/mm2 (compressive)

p2
- 0 = 37 . 0=185

. Principal planes are at 0 = 18.5 or 108.5

2
Maximum shear stress (o) . = LP = 490 N/mm

Check by Analytical method :

Principal stresses are given as :
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Major principal stress, %,

" [600-200]+‘\[[600—(-.200)]2+3002
2 2

200 + 500 = 700 N/mm? (tensile)

o, +0
Minor principle stress, o —2—1

(@3@)_\/[600-(2-200)]2+3002

200 - 500 = - 300 N/mm? (compressive)
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= 2%x300
&n . =075

600 ~ (- 200
36,86 or 216 8¢°

1843 or 108 43°

Maximum shear stress

. (o) 1 Gp:=700-(-3(K))

Umay 2 B

500 N/mm?

Note : Q. = 490 N/mm? by graphical method is due to error in measurement
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At a point in a strained materia| there are two mutually perpendicular stresses of 30
MPa and 70 MPa both tensile. They are accompanied by a shear stress of 20
MPa Determine principal plane and principal stresses. Use Mohr's stress circle
method only. (S-08, 4 Marks)
Solution :
Given: o =30 MPa (tensile). o, =70 MPa (tensile),  q = shear stress = 20 MPa

Draw the Fig. 7.10.4() from the given data for better undrstanding.

Oy = 70 MPa

1

20 MPa «—— +

30 MP

v
.70 MPa
Fig. T.10.4(a)
awing Mohr's diagram -

thod of dr |
e O 1o represent sero direct Stress

s 1cm= 1) MPa and then draw o = OA - 3 ¢m for 30 MPa (tensile) and

| Choose porn!
) Take the scale

" 20 MPa (tensile) on same side of 'O as shown n Fig. 12,

—oB=7¢cm for | |
: LA upwards since shear stress on this plane s clockwise such that

Draw 2 pcrpcndicular

o
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ﬁ Similarly, draw BC = q downwards STEER SR T T Pl o s
AD = q. Simiarly, o
anticlockwise. o
izontal linc at £ . ) | ‘
4. Join DC which cuts the ::(l’; o radius. draw 2 circle which cuts the horizontal iy, .
'-_ S RSSO SN R R e A —
S: P as a centre and PC a |
R and S. =
O See the Fig. 7.10.4(b). - . ,
OA=0,=3Cm
"OB=0y= 7cm
- AD=BC=gq=2cm
_0S=0p
“OR =0y,
i " LP= (at)max
-4 - g = Angle of major
t principal plane

Fig. 7.10. 4(h) Mohr's diagram (scale 1 cm = 10 MPJ)
To find principal stresses and planes :
. Measure *OS’ which gives the major principal stress (c:pl )

o = /(0S)xscale=78x10=78 MPa wADS,
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Problem 3.13. Direct stresses of 120 Nimm? tensile and 90 Ninm? COMPression exist on
two perpendicular planes at a certain point in a body. They are also accompanied by shear
stress on the planes. The greatest principal stress at the point due to these is 150 Nimm?2, |

(a) What must be the magnitude of the shearing stresses on the two planes ? | |

(b) What will be the maximum shearing stress at the point ? |

Sol. Given : '
Major tensile stress, o, = 120 N/min?
Minor compressive stress, 0y = — 80 N/mm? {(Minus sign due to compression)
Greatest principal stress = 150 N/mm?
{a) Let v = Shear stress on the two planes.
. ~ Using equation (3.15) for greatest principal stress, we get
: Zz
‘ Greatest principal stress = E%{—I"i; + J{%&J + 17
2
or 150 < 120+2f—90:-+J(12ﬁ-;:-9u}J o2

120 - 90 J{lﬂl}+9ﬂr \
= + + T
2 2

61

Government college of Engineering and Research Awasari




=15+ 1{1055 + T2
or 159.— 15 = ,Jlﬂﬁz . I
or 135 = 1)1{}52 +1° |

Squaring both sides, we get
1352 = 1052 + ©* .
<2 = 1352 - 105 = 18225 — 11025 = 7200 -

T = /7200 = 84.853 N/mm?® Ans.
(&) Ma:-:irﬂﬁm shear stress at the point
Using equation (3.18) for maximum shear stress,
| | 1 ) 2
(6 = 3 V(01 = 02 +4T
= % 120 = (- 90012 + 4 x 7200

or

(+ 7%= 7200)

' 1
- .515 J210% + 28800 E%Jmm 28800 = % x 270
= 135 N/mm?, Ans.
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; a certain point in ' ] tresses on two planes, at

Problém 3.14. Af a certain point in @ strained material, the : .

right angles to each other are 20 NimmZ and 10 N/imm? both tensile. They are m;cumpﬂ:rgm@ bJE
a shear stress of a magnitude of 10 Nimm?. Find graphically or otherwise, the location of principa

planes and evaluate the principal stresses. (AMIE, Summer 1?34} |
Sol. Given : |
10 Nafmr-n2
o A & 1|.. A 'S & |
¢ = 10 M/mm :

F s

F 3

r 3

F

Fy

F 3
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Major tensile stress, o, = 20 N/mm?

r ~ Minor tensile stress, o, = 10 N/mm?
. Shear stress, =10 N/mm?
Location of principal planes '

The location of principal planes is given by equation (3.14).

Using equation (3.14),
2t 2x10 2x10
tan 26 = & = =
: 6;-0y 20-10 10 2.0

20 = tan-1 2.0 = 63° 26’ or 243° Eﬁ‘

“or f = 31° 43 or 121° 43’. Ans.
‘ Magmmfde of pnne;paf stresses '
.. . The major principal stress is given by equation (3.15)

Major pnnmpal stress

- 0 + 0a + 0] — g +172 - 20 4 10 + 20 1{}) + 1{]2
2 2 2 2

=15+ /5% + 100 =15+ 25+ 100 = 15 + /125 = 15 + 11.18
= 26.18 N/mm?. Ans, .
The minor principal stress is given by equation (3. 16).
Minor principal stress

:r : . _ a; + 0y _ O - Og .:2
o =T 2 J[ 2 ] !
= 20+10 (20 - 10Y?
HE = - il + 102
5 2 \?[ 2 ]
=15-11.18 = 3.82 N/mm?. Ans.
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1 Fig. 3 Problem 3.15. A poini in a strained material is subjected to the stresses as shown in
=, .15,

Locate the principal planes, and evaluate the principal stresses.

Ll

40 Niram”

N
\

40 anmz
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Sol, Given:
The stress on the face BC or AD is noi normal. It is inclined at an angle of 60° with face
BC or AD. This stress can be resolved into two components L.e., normal to the face BC (or AD)
and along the face BC (or AD).
Siress normal to the face BC or AD |
_ _ 60 x sin 60° = 60 x 0.866 = 51.96 N/mm?® - |
Stress along the face BC or AD | |
: = B0 x cos 60° =60 x 0.5 =30 N/mm? |
‘The stress along the face BC or AD is known as shear stress. Hence = 30 N/mm? Due |
to complementary shear siress the face AB and CD will also be subjected to shear stress
of 30 N/ram?. Now the stresses acting on the material are shown in Fig. 3.16.

40 Nimm
& F 3 3 .1; F Y
o
. 30 Mimm
NE P " > ﬂE
& .
— —
[TE I | e U3
w
2
A0 Mfmm =
L ¥ Y LY v
40 Wirmm
Fig. 3.16
Major tensile stress, o, = £1.96 N/mm®
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Shear stress, 7 = 30 N/mm?
Location of principal planes
Iet 8 = Angle, which one of the principal planes make
The location of the principal planes is given by the equation (3.14). | |
Using equation (3.14}, we get
2t  2x30
o, -Gy 51.96-40
28 = tan~! 4.999 = 78° 42 or 258° 42
8 = 39° 21’ or 129° 21'. Ans.

with the stress of 40 N/mm®. |

= 4.098

tan 20 =

or
Principal stress _
The major principal stress is given by equation (3.15).
Major principal stress
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= 4598 + 30.6
= 76.58 N'mm?, Ans.

The minar principal stress is given by equation (3.18).
Minor principal stress

Government college of Engineering and Research Awasari
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T2 2

2
i 51,93 +40 J[Emﬁz -4{:] \ 302
= 45.98 - 30.6

= 15.38 N/mm?. Ans,
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Different Theories of Failure :

These are five different theories of failures which are generally used
Maximum Principal stress theory ( due to Rankine )
Maximum shear stress theory ( Guest - Tresca )
Maximum Principal strain ( Saint - venant ) Theory
Total strain energy per unit volume ( Haigh ) Theory
Shear strain energy per unit volume Theory ( Von - Mises & Hencky

Government college of Engineering and Research Awasari
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/ |

—(a) Maximum Principal stress theory :

This theory assume that when the maximum
principal stress in a complex stress system reaches
the elastic limit stress in a simple tension, failure

A

L

Ty

.
-

Tuy

will occur. Therefore the criterion for failure would o«
be o1 = 6 yp For a two dimensional complex stress
system o 1 is expressed as Where ¢ x, 0 yand o xy

are the stresses in the any given complex stress

system. o, + 0,
- LS

“I 2
0, = 5 +§,d|r|:u:rx—u:rvj| +:fl.*1ﬁEr

P

=
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(b) Maximum shear stress theory:

This theory states that the failure can be .
assumed to occur when the maximum shear I
stress in the complex stress system is equal

to the value of maximum shear stress in
simple tension.

The criterion for the failure may be
established as given below :

m
=] /
P 1l
f'%/ o)
(=
hi =2
m
=
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(b) M

e

aximum shear stress t

- H
Ty = a0, 50" 6
1 .
Ta = EﬂymnEE
1
ol =50y o
1
Tmatm EHE'F'

whereas for the two dimentional complex stress system

iy, — I
Tnaxm =[ 12 2]

where o, =maximum principle stress
d, = minimum principal stress

S 2
50 12 —i.ﬁﬂx-ﬂyj + 477 3y
1

2

= 1'(|:u:rm - I'JYIIE +drwy = 0,

becomes the criterion forthe failure.

W
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«c) Maximum Principal strain th/eory :

This Theory assumes that failure occurs when the maximum
strain for a complex state of stress system becomes equals to
the strain at yield point in the tensile test for the three
dimensional complex state of stress system.

For a 3 - dimensional state of stress system the total strain
energy U.per unit volume in equal to the total work done by
the system and given by the equation
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(c) Maximum Principal strain th/eory :

L =1/20, = +1720, =4 +1/ 20, =,
substituting the values of 5=, and =
1

=1 =E['5’1‘“?'|:'5’2+'3’3:|]
1 _

=" :E_gz"?":'ﬁ*':’a:'_
_ Ty :
= ‘E_':’ BRI rY

Thus, the fallure criterion becomes
o
T SR B o
[ v 22—y ] >

T T YTy T Oy
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—(d) Total strain energy per unit volume theory

The theory assumes that the failure occurs when the total strain energy

for a complex state of stress system is equal to that at the yield point a
tensile test.

Therefore, the failure criterion becomes

It may be noted that this theory gives fair by good results for ductile
materials.

T
IE IE
T

2 2

1 2 2 .
—[U1 + 0,5+ g —E*y[crpz IO+ U3CT1:|] =
iy +da + '3’32 = 2T Ty + Ta g + Ta0y) =

Government college of Engineering and Research Awasari 76



(€) MaxXimum shear strain energy per
-unit volume theory :

This theory states that the failure occurs when the maximum shear
strain energy component for the complex state of stress system is
equal to that at the yield point in the tensile test.

.2
Z 2] —
a-a )+ (o, -ay) +I:I33—I:f1:|]——w

’IEG[ b

Wi'here 5 = shear modulus of regidity
|(0,- 0, + (0, -0, +(05- 0,7 | = 20,
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(€) MaxXimum shear strain energy per
-unit volume theory :

This theory states that the failure occurs when the maximum shear
strain energy component for the complex state of stress system is
equal to that at the yield point in the tensile test.

.2
Z 2] —
a-a )+ (o, -ay) +I:I33—I:f1:|]——w

’IEG[ b

Wi'here 5 = shear modulus of regidity
|(0,- 0, + (0, -0, +(05- 0,7 | = 20,
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i) Distortional or Deviatoric state of

-stress

This is the distortion strain energy for a complex state of stress, this is to
be equaled to the maximum distortion energy in the simple tension test.
In order to get we may assume that one of the principal stress say (o1)
reaches the yield point (oyp) of the material. Thus, putting in above
equation o2 = g3 = 0 we get distortion energy for the simple test i.e
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fora simple tenzion test.
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